Low Level and Long Term Exposure to Multiple Pesticides and Clastogenic Effects in a Flower Plantation in Ecuador. Harari R.(1), Harari H.(1), López R.(2), Freire R.(1) (1) IFA. Corporation for the Development of the Production and Work Environment. (2) Science and Technology Process of the Public Health Ministry and the Biomedicine Centre. ### Introduction Mutagenic effects, including clastogenic changes are known related with some kind of pesticides. Many studies report important changes like Sister Chromatide Exchanges (SCE) and Chromosomal Aberrations (CA) associated with pesticide exposure. Also, Chromosomal Aberrations are considered as predictive indicators of cancer. Flower plantations in Ecuador use different kind of pesticides intensively. Organophosphates, carbamates, pyrethroids and sometimes also chlorinated pesticides are used two or three times weekly, mixing different products. Application is done with centralized system or manual system but always people is exposed in cultivated areas, post-harvest, fumigation and other areas close to the workplaces. Doses used are low because if there are too many health effects it could affect the production. So, low levels but long term use of pesticides is very common, and greenhouses are workplaces with microclimate problems such as low ventilation, high temperature and humidity. Workers are not enough provided with personal protection. See Table I. The purpose of the study was to identify low dose and long term exposure to different pesticides (organophosphates, carbamates, chlorinated and pyrethroids) of workers in a flower plantation and to look for clastogenic effects with the study of chromosomal aberrations. ### Materials and Methods Pesticides used in a flower plantation were listed and 99 workers exposed to those pesticides and 50 non exposed subjects were studied with a questionnaire, Erythrocyte Acetyl Cholinesterase test, and blood samples were taken looking for Chromosomal Aberrations. Blood samples were cultivated in RPMI 1640 medium with bovine foetal serum and phytohaemaglutinin by 72 hours and results were reported. Additionally, measurements of dust, ventilation and microclimate were taken in the workplaces. Water and soil samples were obtained from different workplaces. ### Results and Discussion Ventilation was low, temperature is around 30°C and respirable dust was high in the greenhouses specially. Water and soil samples showed the presence of some chlorinated and organophosphates. In this population, sex and age did not show significant differences between groups. Time of residence in the area, congenital malformations in the family, cancer cases in the family, X Rays in the last three months, smoke, and alcohol intakes were analysed and no differences were found between exposed and non exposed. Only in medicine intakes it was found more consumption in the exposed groups. Table II. Statistical significant difference between exposed and non exposed groups for most of the Chromosomal Aberrations was found. (p<0,05). Table III. Multiple exposure to pesticides, low dose and long term, could produce mutagenic effects in the flower plantations workers. Further studies are needed to look for details about specific changes produced for each pesticide. | | | Toxicological
Class | | |------------------------------|--------------|--|--| | Pesticides | CAS No. | | | | Temik (Aldicarb) | 116-06-3 | <u> </u> | | | Bravo 500 (Chloro thalonyl) | 1897-45-6 | | | | Captan | 133-06-2 | | | | Furadán (carbofuran) | 1563-66-2 | | | | Nuvan (DDVP) | 62-73-7 | | | | Difonathe | 944-22-9 | | | | Mavrik (Fluvalinate) | 102851-06-9 | | | | Roundup - Glyfosanate | 1071-83-6 | | | | Cobox (Copper Oxyclhoride) | 8012-69-9 | <u> </u> | | | Rubigan | 60168-88-9 | 11 | | | Bayleton | 43121-43-3 | | | | Anthiomix (Anthio) | 2540-82-1 | <u> </u> | | | Bulldok (Beta-cyfluthrin) | 68359-37-5 | | | | Cymbush (Cypermethrin) | 52315-07-8 | !! | | | Decis (Deltamethrin) | 52918-63-5 | | | | Goal | 42874-03-3 | | | | Toril (loxynil) | 1689-85-5 | <u> </u> | | | Fongarit | 57646-30-7 | III | | | Mertec - thiabendazale | 148-79-8 | | | | Plantvax | 5259-88-1 | III | | | Aviso DF (Cymoxanil metiram) | 57966-6-95-7 | | | | Mirage (Prochloraz) | 67747-09-5 | | | | Sandofan (oxadixyl) | 77732-09-3 | <u> </u> | | | Mitac (Amitraz) | 33089-61-1 | | | | Diuron | 330-54-1 | | | | Aliete (fosetyl-aluminum) | 39148-24-8 | | | | Avit (Abamectin) | 717511-41-2 | IV
IV | | | Euparem | 1885-98-9 | IV | | | Anvil | 79983-71-4 | IV | | | Mancoceb | 8018-01-7 | IV N | | | Bavistin (Carbendazim) | 10605-21-7 | IV | | | Kumulos (sulfur) | 7704-34-9 | IV N | | | Benomyl | 17804-35-2 | <u> </u> | | | Population | | Exposed | Non Exposed | | |---------------|----------------------------|-----------------|-------------|--| | SEX | Male | 37,4 | 41,1 | | | | Female | 62,61 | 58,9 | | | AGE | >20 years | 0,0 | 7,1 | | | | 20 - 29 | 63,6 | 58,9 | | | | 30 - 39 | 29,3 | 19,6 | | | | 40 or + years | 7,1 | 14,3 | | | Congenital Ma | alformations in the family | 西南部 医克勒氏 | | | | YES | | 2,0 | 3,6 | | | NO | | 98 | 96,4 | | | Cancer on m | embers of their families | | | | | YES | | 16,2 | 17,9 | | | NO | | 83,8 | 91,1 | | | X Rays i | n the last 3 months | | | | | YES | | 10,1 | 3,6 | | | NO | | 89,9 96,4 | | | | | Smoke | | | | | YES | | 26,3 | 32,1 | | | NO | | 73,7 | 67,9 | | | A | Icohol Intake | | | | | YES | | 33,3 | 30,4 | | | NO | | 66,7 | 69,6 | | | Medicine | s Intake last Week* | | | | | YES | | 50,5 | 32,1 | | | NO | | 49,5 | 67,9 | | | DAMAGE | cides - Ecuador 2004 EXPOSED | | NON EXPOSED | | |-----------------------------------|------------------------------|----------|-------------------------------|--------| | | Normal | Abnormal | Normal A | bnorma | | Chromatide Aberrations | | | | | | Gap (gct) | 40,4 | 59,6 | 75 | 2! | | Breaks (bct) | 43,4 | 56,6 | 62,5 | 37, | | Exchanges (inv) | 88,9 | 11,1 | 98,2 | 1,8 | | Chromosomal Aberrations Gap (gcs) | 51,5 | | DESCRIPTION OF REAL PROPERTY. | 41, | | | 51,5 | 48,5 | 58,9 | 41, | | Breek (bct) | 60,6 | 39,4 | 80,4 | 19,0 | | Rings | 96 | 4,0 | 98,2 | 1,0 | | Dicentric (dic) | 92,9 | 7,1 | 100 | | | Acentric fragments (ace) | 64,6 | 35,4 | 85,7 | 14, | | Other Aberration | | | | | | Satellite Aberrations (asosat) | 31,3 | 68,7 | 69,6 | 30,4 | | Open Chromatides (opct) | 36,4 | 63,6 | 48,2 | 51,8 | | Chromosomal instability (desp) | 76,8 | 23,2 | 98,2 | 1, | | High Staining Regions (hsrs) | 83,8 | 16,2 | 94,6 | 5,4 | | Polyploidy | 65,7 | 34,3 | 71,4 | 28,0 | | Pulverization (pvz) | 58,6 | 41,4 | 58,9 | 41, | # Conclusions Safety and hygienic measures must be taken immediately to control exposure and biological monitoring of the workers should be done, to avoid chronic diseases and in particular carcinogenic impacts in this population. ## References: - Axelson, O (1987) Pesticides and cancer risk in agriculture. Med Oncol Tumor Pharmacother, 4:207-217. - -Dulout FN, Pastori MC, Olivero OA, Gonzalez Cid M, Loria D, Matos E, Sobel N, de Bujan EC, Albiano N (1985) Sister-chromatide exchanges and chromosomal aberrations in a population exposed to pesticides. Mutat Res 143:237-244 - -Hagmar L, Brogger A, Hansteen IL, Heims S, Hogstedt B, Knudsen L, Lambert B, Linnainmaa K, Mitelman F, Nordenson I, et al. (1994) Cancer risk in humans predicted by increased levels of chromosomal aberrations in lymphocytes: Nordic Study Group on the health risk of chromosome damage. Cancer Res 54:2919-2922. - -Moorehead PS, Nowell PC, Mellman WJ, Battips DM, Hungerford DA (1960) Chromosome preparations of leukocytes cultured from human peropheral blood. Exp Cell Res 20:613-616